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A co-ordinate system consisting of the left-running characteristics (a = const.) 
and the streamlines ($ = const.) is used. The governing equations are derived in 
terms of a and $ for a two-dimensional steady supersonic rotational inviscid flow 
of a perfect gas. The equations are applied to the problem of an initially parallel 
supersonic rotational flow which expands around a convex corner. The velocity 
of the incoming flow at the wall is considered to be either supersonic (case 1)  or 
sonic (case 2).  For each case, solutions uniformly valid in the region near the 
leading characteristic and in the region near the corner, are found for the Mach 
angle and flow deflexion angle in terms of their values on the leading character- 
istic and at  the corner. In  case 2, a transonic similarity solution is found and 
composite solutions are constructed for each region. Comparisons are made with 
existing exact numerical results. 

1. Introduction 
Analytical solutions for supersonic rotational flows have been limited, for the 

most part, to those problems where the effects of rotation are small enough that 
they may be considered as perturbations from a known irrotational solution. If 
the usual Cartesian co-ordinates are used, then the characteristics are those 
calculated from zeroth-order irrotational flow conditions. Thus, a signal is 
propagated into the flow along an irrotational flow characteristic instead of along 
one which has been adjusted to take account of the rotation; far from the dis- 
turbance, the cumulative effects of this error can be such as to invalidate the 
solution. The simple perturbation theory is, therefore, not uniformly valid 
throughout the field and more sophisticated techniques must be employed to 
make it so (Van Dyke 1964). 

For supersonic flows with large rotation, numerical solutions are obtained by 
employing the method of rotational characteristics. In  this method, it is necessary 
t o  compute the values of the entropy and total enthalpy which exist along the 
streamline which passes through the intersection of two characteristics at  a given 
net point. The accuracy with which these computations are made can be im- 
proved by using iteration methods at  each point (Ferri 1954). The calculations 
result in a knowledge of the physical location of the two families of characteristics 
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and the flow properties at  each intersection; the location of a given streamline 
must be found by another calculation. 

In  this paper, a set of independent variables is proposed which is different 
from that used previously in either analytical or numerical computations for 
supersonic flows. This set is composed of a and @, where a is constant along a left 
running characteristic and @ is constant along a streamline. These co-ordinates 
are not orthogonal and thus do not have the geometric simplicity of orthogonal 
curvilinear co-ordinates. Moreover, because the two-length metric coefficients 
are different, they must be retained in the equations, a condition which does not 
arise in the method of characteristics. On the other hand, the proposed co- 
ordinate system has the virtue that approximate solutions found in terms of a 
and @ do not contain any inherent order of approximation for the shape of the 
characteristics. Perturbation solutions may be found in terms of a and q? and the 
proper forms of the left running characteristics and streamlines are found after 
these solutions have been obtained, to the same order of approximation. Thus, 
according to Whitham (1952), ". . .linearized theory gives a valid first approxima- 
tion to the flow everywhere provided that in it the approximate characteristics 
are replaced by the exact ones, or a t  least by a sufficiently good approximation 
to the exact ones ", and here, the co-ordinate system has been set up such that the 
solutions are found in terms of the exact left-running characteristics. It is clear 
that this co-ordinate system is especially useful when initial conditions are known 
along a leading characteristic and boundary conditions are given along a stream- 
line. 

The problem considered in this paper is that of two-dimensional rotational 
supersonic flow around a convex corner. The flow is assumed to be steady and 
inviscid and to be composed of a perfect gas with constant specific heats. The 
incoming flow, that is, the flow which enters the expansion region across the lead- 
ing characteristic, is assumed to be parallel flow with either a supersonic, or 
sonic Mach number at the wall. The former case should be useful in the analysis 
of the flow at the base of an ogive-cylinder supersonic body, while the latter should 
be useful in approximating the expansion of a supersonic boundary layer around 
the corner at  the base of a re-entry vehicle. It is well known that if a supersonic 
boundary layer is expanded around a corner with a significant pressure decrease, 
the pressure forces are large compared to the viscous forces, and the turning may 
be described by inviscid equations. The flow entering the expansion region thus 
has gradients in the flow variables and is rotational. It has been shown recently 
by Olsson & Messiter (1968) that in a hypersonic boundary layer the flow is 
not quite parallel as it enters the expansion region; instead, the streamlines 
converge slightly. In  addition, the assumption made here that the expansion is 
centred on the initially sonic streamline means that the subsonic portion of the 
boundary layer is neglected. Nevertheless, this model of the expansion of the 
boundary layer a t  a corner has been shown to be an excellent approximation by 
several authors (Weinbaum 1966; Weiss & Weinbaum 1966; Weiss 1967; Weiss 
& Nelson 1968). 

In  the next section, the governing equations are derived in the new co-ordinate 
system and in subsequent sections, solutions are presented for various regions of 
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interest. Details of the calculations presented here may be found in the reference 
(Adamson 1968). 

2. Derivation of equations 
In  the following, the dependent variables are made dimensionless with respect 

to reference values, with the exception of the entropy and total, or stagnation, 
enthalpy. The entropy is made dimensionless with respec5, to the specific gas 
constant, R, and the total enthalpy with respect to the square of the reference 
velocity, ?&. All lengths are referred to a characteristic length L. Dimensional 
quantities are denoted by a bar. 

The co-ordinate system and the associated notation are shown in figure 1. 
There, r and Q are polar co-ordinates, ,u = s i r 1 (  1/M) is the Mach angle, and 8 is 
the inclination of a streamline from the horizontal. The velocity components are 
shown in figure 2 ; u, and v, are the velocity components parallel and perpendicular 
to the left-running characteristics, respectively, and u and v are the usual radial 
and tangential velocity components. The relationships between the various com- 
ponents are, 

u = u, sin w - v, cos w ,  (14  

v = u, cos w + v, sin w ,  (1 b)  

where w = 8+$+p. ( 2 )  

Now since V ,  is perpendicular to a characteristic, it  is equal to the speed of 
sound, a. Thus, in dimensionless form, 

va = a/Mr, (3) 

T = M : v ~ ,  (4) 

where Jfr  = a,/., is a reference Mach number. Since a perfect gas is assumed, then 

where T is the temperature, and the total enthalpy, h,, may be written as 

where r2 = (y - l) /(y + 1) and y is the ratio of specific heats. Now h, is a function 
of$ alone and u, and v, depend on both a and $. Hence, (5) is satisfied in general 
if 

where htl = hi,($) and E = €(a, $). It should be noted that whereas ht is a given 
function of $, E is a general function of a and $ to be determined. In  Prandtl- 
Meyer flow, ht is a constant and E = FQ + constant; equations (6) are seen to be a 
simple generalization of the Prandtl-Meyer solution. Since the Mach number 
may be written as 

47 Fluid Mach. 34 
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the relationships between 8 and p and v, the Prandtl-Meyer angle, are easily 
shown to be 

tane = I’ cotp,  ( 7 4  

€ 7 7  v = p + + - - - .  
r 2  

FIGURE 1. Sketch of co-ordinate systems. 

CL = const. 
/ 

/ 
/ 

- II .  = const. - - -  

FIGURE 2. Velocity components in the (r, 9) and (a, 9) co-ordinate systems. 

The entropy is a known function of $. Hence, a known function of $, say 
Fl, may be defined as follows: 

dS = pd[ln(Pp-Y)] = -d[lnFl($)], (8) 

where ,B = ( y  - l)-I, and 8, P and p are the dimensionless entropy, pressure and 
density, respectively. The pressure and density are also related by the equation 
of state 

P = pT = pM,2v2,, (9) 
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where (4) has been used for the temperature. Equations (8) and (9) are satisfied if 

Thus, from (4), (6) and (lo), the thermodynamic properties and velocity com- 
ponents ua and v, may be related to e and known functions of $. 

The governing equations may be written in terms of a and $ with simple 
transformations. In  intrinsic co-ordinates, the continuity and momentum equa- 
tions may be combined to give the following relations (Hayes &, Probstein 1966, 
p. 482): 

where s denotes distance measured along a streamline and n denotes distance 
measured perpendicular to a streamline. Now, if a and $ are to be independent 
variables such that hada and h@d$ denote the elements of length on the a lines 
($ = const.) and the $ lines (a  = const.) respectively, then the local relation 
between intrinsic co-ordinates and the (a, $) co-ordinates is expressed by the 
differentiation formulae, 

a i a  
&=h,%' 

+v- 
a 
an ha aa hssmpa$' 

cotp a i a  - - _  

If this transformation is applied to (1 1) and substitution is made for P according 
to ( l o b ) ,  the resulting equations may be rearranged to give: 

where dH = Pd(ln htl) + y-ld(lnFl) 

= Pd(1n hk) - y-ldS. 

In  order to find expressions for the length metric coefficients, h, and hsy it  is 
convenient to use the local relations between the (a, $) and polar co-ordinates, 

a cosw a - sinu-+-- 
i a  
&@- ar r a$' 

If (15a) is applied to I,+ and the continuity equation in polar co-ordinates is 
employed to define a$/& and a$/&$, it is readily shown that 

h, = I/pv,. (16) 
47-2 
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Next if equations (15) are applied first to r and then to $, the following relations 
result : 

and 

I ar 
ha aa -- = sin (0 + $), 

Finally, if derivatives of (17) are taken with respect to $, and (17) and (18) are 
used to rid the resulting equations of r and $, they may be combined to give a 
relation for ha in terms of a and $; with simple substitutions this relation may be 

i a  written as, 
1 ah, E 

h, a$ =-s inp-  :a( p+-+# r ) +-- sinpaa (m- _ _  (19) 

Since E and h, may be written in terms of p and known functions of $, (13) and 
(19) may be considered as three equations for the unknownsp, 0 and h,. Equations 
(17) and (18), or their equivalents, may be used to find the physical location of 
the left-running characteristics and streamlines in the flow field. 

3. Prandtl-Meyer flows 
In this section, expansion of a supersonic flow around a corner is considered for 

the case where H is a constant. It can be seen from (13) that when dH/d$ = 0 ,  a 
solution is 

,u+sr-l+O = v + O + & r  = const. (20a) 

O = O(a). (20b) 

Since 8 may be written in terms of p (equation (7a)) ,  then 

p = p(.), E = €(a). (21% b )  

Thus, the Mach number and flow deflexion angle are constant along any left- 
running characteristic in the expansion region. In  particular, this must be the 
case along the leading characteristic, so this solution holds when the incoming 
flow is parallel with no gradient in Mach number. Furthermore, since the equa- 
tion for a left-running Characteristic (a = constant) is, in Cartesian co-ordinates, 

dy/dx = tan (8 + p), ( 2 2 )  

the characteristics are radial lines. Thus, this is a simple wave solution and is, 
essentially, the Prandtl-Meyer solution. However, it should be noted that the 
fact that H is constant does not imply that the flow is necessarily irrotational. 
From (14), it is seen that dH = 0 either when h, and S are both constants, which 
is the irrot ational case, or when the variations in h ,and S across streamlines just 



Supersonic rotational $ow around a corner 741 

balance each other, such that PdInF, = y-ldX. In  the latter case the flow is 
rotational, but it expands along each streamline as though it were part of a 
Prandtl-Meyer flow with upstream conditions being those given on the stream- 
line in question. This solution was given previously by Cole (1965) with the 
derivation proceeding along somewhat different lines. 

4. Asymptotic solutions for supersonic rotational flow around a 
convex corner 

This section contains asymptotic solutions derived for two different regions. 
The first is the region near the leading characteristic and the second is the region 
near the corner. The complete region under consideration is shown as the shaded 
region in figure 3. In  all cases, the incoming flow is assumed to be parallel. 

FIGURE 3. Flow regions covered by asymptotic solutions. 

Two different conditions are considered for the velocity of the incoming flow 
at the wall; in the first, it  is supersonic and in the second it is sonic. When the 
first condition holds, it  is shown that the solutions valid in each of the regions 
mentioned above agree in the common region, so that a composite solution may 
be constructed. When the second (sonic) condition holds, it  is shown that a 
transonic similarity solution may be found which matches with each of the solu- 
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tions in the above-mentioned regions. In  this case, composite solutions are found 
for each region. 

In  each of the following solutions it is assumed that a t  the corner, Prandtl- 
Meyer solutions hold, so that the left running characteristics are tangent to radial 
lines at  the corner. Then a is associated with $o, the value of 4 for the radial line 
in question, at  the wall. That is, 

a 5 $,, + const. (23) 

Henceforth, the subscript 0 is used to denote conditions at the corner, and the 
subscript i is used to denote conditions along the leading characteristic. The 
double subscript i0, then, is used for conditions at  the point where the leading 
characteristic meets the corner. 

Solutions valid near the leading characteristic for JJ,, > 1 

Since a: is associated with $o and this expansion is to be carried out for a < 1, the 
following solutions are valid for large rotation but small turning angle. Along the 
leading characteristic (a = 0 ) ,  flow properties are assumed known as functions 
of $ and asymptotic expansions of the following form are assumed; 

where ,do) = pi is the given Mach angle distribution along the leading character- 
istic and where 

such that 

Similar expansions are used for E and 6. The proper form of expansion for h, may 
be inferred from (19) to be 

where f; = dfl/da:. 
When the above expansions are substituted into (13) and (19), and terms of 

like order infl(a) are collected, the zeroth- and first-order equations are found to  
be, if d6(o)/d@ = d6,/d@ = 0: 

ha = fi(a) hg)(@) + . . . , (25 )  

-&(pi+:) = sin,ujcospi--, dH 

dlk 
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where h$) = Equation ( 2 6 a )  is simply the relationship between H and 
the Mach number distribution which must be satisfied along the leading 
characteristic. The solution to (26b)  and (26c)  is, 

where the constant of integration is included in fl and will be found later. With 
O(1) and p(l) + &)/r known, equations (26d)  may be solved, but this is necessary 
only when the physical location of the characteristics is desired, for a given 
problem. If the expansions for p and E are substituted in ( 7 a ) ,  a relation between 
p(1) and ~ ( 1 )  may be found and combined with (27 )  to yield an expression for id1) 
alone. Thus, the solutions for 8 and p are, to first order, 

e =  -f( a) (sinpi cospi)*, P a )  

In general, fl(a) may be found by evaluating either of equations (28)  at the corner 
where $ = 0, pi = pi,, etc. It is readily shown that the expressions are equivalent 
if the Prandtl-Meyer solution holds at  the corner. Hence 

and (28 )  and (29 )  complete the solution for 13 and ,u. In  the following expressions, 
these solutions are written in terms of the Mach number. In  addition, (10 b )  has 
been used to form the term (P - Pi)/Pi, where Pi is the pressure of the incoming 
flow on the streamline which passes through the point where the pressure is P: 

Equations (30 )  relate 8, M and P at a point located by a given streamline and 
left running characteristic, to the values of these variables both in the incoming 
flow on the given streamline and at  the corner on the given characteristic. The 
dependence of 8 and P on Mi (i.e. the $dependence) has been given by Weinbaum 
(1965, 1966) by a different method. For example, when considering the turning 
of a supersonic boundary layer, where the Mach number of the incoming flow 
is unity at  the wall, he showed that 

( M i  - l)*/Mi8 = const. 

is a solution as long as Mi does not approach unity, i.e. near the leading character- 
istic but away from the corner. The constant was found by comparing the above 
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expression with a rotational characteristic solution a t  a given Mi. Here, it is 
shown that the solution holds in general and the ‘ constant ’ may be evaluated for 
a rotational corner flow where Mi, $. 1. Later, a solution is found for the case 
where Mi = 1. 

It is clear that the solutions given in (30) are not valid for Mi, = 1. However, 
(28) should be valid outside a transonic region and should match with the 
transonic solution in the region near the leading characteristic. The matching 
procedure should thus lead to the proper form forfi(a). 

Solutions valid near the corner, for Mio > 1 

In this sectlion, approximate solutions are found for the case @ 4 1,  where 
9 = 0 is associated with the wall. Since @ is dimensionless with respect to a refer- 
ence velocity, 9;., and a characteristic length, L, the condition @ < 1 corresponds 
to distances from the corner small compared to L. Here L is associated with the 
vorticity or equivalently with the gradient of H since this is the only source of a 
characteristic length in the problem. Hence these solutions are valid for small 
rotation but) large turning angle, because no restriction is placed on a. 

I 
corresponds to r < 1. Hence the expansions found for this case are similar to those 
found by Johannesen & Meyer (1950) and Pai (1954). In  particular, Pai con- 
sidered the special case of supersonic rotational flow around a corner for iso- 
energetic flows. The solutions given here are more general in that both total 
enthalpy and entropy variations are allowed; more importantly they are found 
later for the case where the incoming flow at the wall is sonic, a problem which has 
not been considered heretofore. Finally, the solutions are shown to be inde- 
pendent of the initial Mach number distribution. 

In the region under consideration, @ < 1, dH/d$  may be represented by its 
Taylor series expansion, 

Since r = O(h,@) and h, = O ( l ) ,  it  is seen that, as mentioned above 11. 

dH/d@ = (dH/d@)o  + @(d2H/d@2)o + . . . , 
where L is chosen such that (dH/d$) ,  = O(1). I n  view of the form of this ex- 
pansion and the governing equations, i t  appears that a simple expansion in 
powers of @ will suffice for 8 and p and therefore E.  That is, 

I!? = &’(a) + @&)(a) + . . . , (31) 

where @O)(a) = B,, the value of 8 at the corner. Similar expansions hold for p and 
E. On the other hand, since 

h,Aa = O(rA$) = O(h+@A$), Aa = O(A$) 

and h$ = (pv,)-l = O(l) ,  

then 7% = O ( 9 )  
and so h, must have the following form of expansion, 

h, = @[Kc’ + @A$’ + ...I. 
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When the above expansions are substituted into (13) and (19) and terms of like 
order in $ are collected, the resulting zeroth- and first-order equations are, 

where ij(l) = p(1) + #)/I' and &$)is h, evaluated at  $ = 0. Equation (330,) is simply 
a statement of the fact that the zeroth-order functions are Prandtl-Meyer 
solutions. This equation, combined with (23) and the fact that the characteristics 
are tangent to radial lines at  the corner so that uo = n/2 may be used to show that 

From (7a)  and (34), then, 

d,uo = - (sin2po+ I'2cos2,uo)da. 

(34) 

(35) 

Equations (33b), (33c), ( 3 3 4 ,  (34) and (35) may be used to derive a first-order, 
linear, non-homogeneous differential equation for P)+ @l) as a function of ,ao the 
solution of which is 

(36) 

where C, is a constant. The integral in (36) may be evaluated analytically when 
y = 1.4 (I? = *), or numerically for other values of y. Then solutions for i;(l) 

and @) are found by using (36) and (33 c). Finally, the equation for P) = p(1)+ &)/I' 
may be combined with the relationship between and s(l)/I', found from (7a) ,  
yielding expressions for and s(l) as functions of ,uo. 

Before the final solutions for 8 and ,u are written, it should be noted that they 
may be written in terms of Api = pi -pie rather than $, thus ilIustrating the 
fact that they are independent of the actual distribution of pi (i.e. Hi). Thus, 
from (13a) and ( 7 a ) ,  it, can be shown that along the leading characteristic, where 
a8/a$ = 0, but near the corner, where @ < 1 and l,ui-,uiol < 1, 

If (37) is used to substitute for + in the asymptotic expansions for 6 and p, their 
solutions are, to first order, for y = 1.4, 

-cot,uo(l + (4r2/5) cot2,uo+sin2p,)}+ ..., ( 3 8 4  
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- cotp,(sin2po + 8r2) (1 + r2cot2po) + . . . . (38b) I 
The constant C, is found by imposing the condition that along the leading 
characteristic, 6 = 0. Since 6, = 0 when a = 0, 

(1 + ($I?) cot2pf0 + sin2puio) c, = (cotpi0)3 
(1 + r2 Cot2piO)t 

(39) 

Thus, 6 and ,u may be calculated from (38) and (39). As in the previous section, 
the solutions could be written in terms of the Mach number but, in this case, 
the expressions are more cumbersome. Again, the solutions give 8 and ,u at the 
intersection of a given streamline and a given left-running characteristic in terms 
of their values both in the incoming flow on the given streamline and at the corner 
on the given characteristic. Hence they are universal solutions in that they are 
independent of the actual Mach number distribution in a given flow, This in- 
teresting result, mentioned by Weinbaum (1966) for the solutions valid near the 
leading characteristic and shown here for the flow near the corner, holds only in 
the regions where approximate solutions may be used. In  addition, it should be 
noted that the physical location of a given solution point does, of course, depend 
on the initial conditions of the problem considered. 

When Mi, = 1,  (pi, = in), it  is seen that C, = 0. Then, from equations (38) it  
appears that as the leading characteristic is approached from downstream 
(6,+0, po+Qn),  O - t O  as it should. However, in this limit, p++n which is 
incorrect since no variation in the incoming flow Mach number is allowed. That 
is, the solutions are not uniformly valid in this limit. 

An interesting mathematical point of difference between this and previous 
analyses may be noted. When approximate solutions for initially non-uniform 
irrotational or rotational flows around a corner are sought in terms of expansions 
in the polar variables r and 4 ,  discontinuities in the fist-order tangential velocity 
component are found on the leading characteristic (e.g. Johannesen & Meyer 
1950; Pai 1954). Evidently, this is due to the fact that the leading characteristic 
is taken to be a zeroth-order characteristic. In  the present formulation such 
discontinuities do not appear. 

Composite solution for the case Mi, > 1 

The approximate solutions in the previous t,wo sections cover the region near 
the leading characteristic including the corner, and the region near the corner, 
including the leading characteristic. Hence it is clear that there must be a common 
or overlap region. In  this common region the expressions must be the same; i.e. 
they must match, term by term. This can be proven by expanding each solution 
around the point at which the leading characteristic meets the corner. In  terms 
of the Maoh angles, then, 
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where the f i s t  expansion is used in (28) and (29) and the second expansion is used 
in (38) and (39). The resulting expressions for 8 and p, which are found to be the 
same for each expansion procedure are, for y = 1.4, 

+ ... ) 1 cos2pio - sin2pio 
2 sin pio cos pio 

p = pio + Api + Ap, 1 + cot pi,, + 3 tanpio [ 
(1 - r2) sin pio cos pi0 

+ sin2pio + r2 cos2pio 
-1) + . . . . 

With the common terms known, it is possible to construct composite solutions for 
6 and p uniformly valid to order Apg near the corner and to order Ap, near the 
leading characteristic. The composite solutions are formed by adding the solu- 
tions valid near the leading characteristic (equations (28) and (29)) to those 
valid near the corner (equations (38) and (39)) and subtracting the common terms 
(equations (41)) (e.g. Adamson 1968). 

Transonic similarity solution for the case Mi, = 1 

It has been shown that the approximate solutions in both the region near the 
leading characteristic and the region near the corner are not uniformly valid as 
Mi, -+ 1. This implies that for this limit there is another solution, hereafter re- 
ferred to as the transonic solution, which holds in the limit, and which must 
match on the one hand with solutions valid near the leading characteristic and 
on the other hand with solutions valid near the corner. The region in which this 
solution holds is that region in the vicinity of the intersection of the leading 
characteristic with the corner, where the Mach number is only slightly larger 
than unity. 

For this transonic analysis, it is convenient to introduce p*, where 

p = +n-p* (42) 

and where p* > 0 and p* < 1. If terms of order 
one, then the governing equations (( 13) and (19)) become 

are neglected compared to 

where ( 7 a )  was used to write the derivatives of E in terms of p*. 
Along the leading characteristic, where i%/a$ = 0 equation (43a) may be 

integrated. Then, since H = H($)  may be expanded in a Taylor series, p: may be 
related to $. Thus, 

p p -  (""i - $+ ... i - r za$  (44) 
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and if, as before, $is ordered by a characteristic length such that (dH/d$)o = O( 1) 
then $ = O(pz2)  and $ < 1.  Hence dH/d$ may be replaced by the constant 
(dH/d$)o in (43a), consistent with the given order of approximation. Similarly, 
it is easily demonstrated that h$ may be replaced by the constant h+o. In  addition, 
it is seen t,hat 6' is of order ,LL*~ from (43a) and (43 b) ,  so that the term aB/aa may 
be neglected compared to a,u*/aa in (43c). Finally, if the following substitutions 
are made for convenience, 

B = ( i - ry* ,  (454  

ha = hL,oh2 (45 6 )  

then (43) may be written as follows: 

Generally, elimination of two of the three dependent variables from (46)) would 
result in a third-order differential equation for the third. However, in this case, 
it  is possible to derive a second-order equation for p*. First, (46a) is differentiated 
with respect to a, and the a,u*/aa which occurs on the right-hand side of the 
equation, is replaced by ah:/a$ from (46c). After interchanging the order of 
differentiation on the left-hand side, the equation is integrated with respect to 
$ and the function of integration is evaluated on the zero streamline where the 
Prandtl-Meyer solutions holds. When the resulting equation is subtracted from 
(46b), a first-order differential equation involving p* and hz is obtained. This 
equation and (46c) may be combined, finally to obtain the second-order differ- 
ential equation for p* 

Although (47) is a non-linear partial differential equation which there is little 
hope of solving in general, it  is possible to obtain a similarity solution which 
satisfies the equation and boundary conditions for this problem. Before going 
into the similarity solution, however, it is convenient to change the independent 
variables from a and 4 to p$ and pz, in that the boundary and matching con- 
ditions are more easily demonstrated. The following transformation is applied, 
then, to (47) 
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where (48a) is a result of (44), and (48b) aresult of equation (35) for& < 1. Next 
a similarity solution of the folowing form is sought, 

and it is easily demonstrated that a similarity solution exists and the boundary 
condition along the leading characteristic (,u* = 1.:) can be satisfied only if 

n = m = l .  

Finally, then, the following equation forf may be derived from (47): 

W(f3 - r3))f” - (f- 7f’)f’(3f3 - 2r3 - 7 f ” f )  = 0, ( 50) 

where the prime denotes differentiation with respect to 7. The boundary con- 
ditions onf are, as 7+07 f+ 1 ,  and as y + ~  f N y. 

The asymptotic solutions to (50) are useful both for starting numerical com- 
putations and in matching procedures. They are found to be 

f =  l+cc$+ ... (7+0), ( 5 1 4  

f =  7+6yrf+ ... (7-f a). (51b)  

A numerical solution of the non-linear differential equation (50 ) ,  subject to 
the given boundary conditions, is difficult to carry out using standard techniques, 
since this is a two-point boundary value problem. However, the equation has a 
group property which allows one to transform the problem to an initial value 
problem, so that the numerical integration may be carried out quite easily 
(Adamson 1968). The numerical computations were carried out on The University 
of Michigan IBM/36O computer; values off as a function of y were found and Z 
and 6 were calculated to be 

( 5 2 a )  

6 = 0.40496. ( 5 2 b )  

a = o.42974, 

The numerical results are presented later as part of the calculation of ,u and 8. 
With ,u* known, it is a relatively simple matter to find 8” and h,:. Thus, from 

(46a) and (46c), it  is seen that the similarity solutions for these variables are of 
the form 

h: = @ g , ( 7 ) / 2 8 ; .  (53 b)  

In  addition, if (53) and (49) are substituted into (46), the resulting ordinary 
differential equations may be rearranged to give g and g, in terms of the knownf. 
Thus, 

9, = 4(fZff’ - r” / f ( f -  7f77 

9 = f + 2r3 + 7g, /2 .  

(54a) 

(54b) 

The asymptotic expansions for g and g, are as 7 + 0 
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and as q+co g =  273+&,1+$&%+..., ( 5 6 4  

(56b)  

Finally, the asymptotic solutions for p* and 8" are written in terms of pz and 
pg for later use in matching. Equations (49)  and (51) are used for p* and (53a) ,  
(55a) and (56a) are used for 0". Thus, as 7-+0 

- 
g, = 1 - q )  1, q -10 6 +.... 

p* = (in) - p  = p: + z(p;)qp:)-% + . . . , (57 a )  

(57b) 

(58a) 

(58b) 

where 9&3 = - @, (59)  

- - a(p;)"p:)4 + . . . , e 
i-r2 

@ * = - -  

and as 7-+ co ,u* = (&r)-p = p$+5(p;)G(p?)Y+ ..., 

e 
1 - r2 

e*=-- - 0; - (p;/2) (&2 + 6(pg)qp:)y + . . . , 

a result which follows from the Prandtl-Meyer solutions if pg < 1. 
Once again, B and p may be written in terms of pz and p; and hence are inde- 

pendent of the initial Mach number distribution, but ha depends on the initial 
conditions through ah, as seen in (53b). 

Composite solutions valid in the region near the leading characteristic for the case 

Uniformly valid solutions in the region near the leading characteristic must be 
formed from a composite of those valid when 2M > 1 (equations (28)), and the 
transonic solutions, (equations (49a)  and (53a)) .  First it  is demonstrated that the 
two solutions match and f,(a) (equations (28)) is deduced; then a composite 
solution is formed. 

In  order to match the solutions, equations (28) are expanded for pf < 1, where 
again, p: = (in) -pi. In  terms of p* and 6*, they become, 

Mi, = 1 

( s o u )  p" = (&r)--p = p : + y ( p f ) - g +  fl(4 ..., i -r  

These expansions are to be compared with those in (57), which are the asymptotic 
expansions for the transonic solutions valid near the leading characteristic 
(Lea pg + 0, or 7 -+ 0). Corresponding solutions match, term by term, if 

The change that occurs inf,(a) when Mi, is allowed to go to unity is illustrated by 
comparing ( G l )  with (29). 
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The proper form of the solutions valid near the leading characteristics are now 
equations (28) withf,(a) given by (61) .  The composite solutions are formed by 
adding these solutions to the transonic solutions (equations (49a) and ( 5 3 a ) )  and 
subtracting the terms common to both in the overlap region (equations (60) ) .  
The resulting expressions for p and 8 may be written in the following form : 

These solutions are uniformly valid to order (&)%. With p and thus E known, all 
the thermodynamic functions and u , ~  and vu may be calculated. Comparison of 
(62)  with exact numerical results is given later. 

Composite solutions valid i n  the region near the corner for the case Mi, = 1 

Uniformly valid solutions are formed from solutions valid near the corner, for 
M > 1 and the transonic solutions. Again, matching is demonstrated first, and 
then composite solutions are formed. 

The solutions valid near the corner for M > 1 are essentially those given in 
(38) ,  with one important difference. In  the present case, $(dH/d$),  is replaced 
by p:2 as in (44) rather than by Apt as given in (37) ,  when the solutions for p and 
8 are considered. If the resulting solutions are expanded, then, for p; < 1, 

These equations are to be compared with (58), which are the asymptotic ex- 
pansions for the transonic solutions, valid near the corner (i.e. p; + 0, or 7 -+ co). 
First, consideration of the expansions for 6" indicates that if matching is to 
occur at  least up to terms of order (P:)~, C, = 0. This is consistent with the ex- 
pression derived for C, previously (39) ,  in that as pi, -+ &- or &, + 0, C,-+ 0. 
The fact that the term of order (p:))4: is not matched in the expression for p* 
is due simply to the fact that terms of order (P*)~ have been neglected compared 
to one in this analysis, and the zeroth-order term is p;. Since 8, is of order (p$)3, 
the ( ~ : ) ~ p ;  term is important in the expression for 8. In  addition, it can be shown 
that if terms of order (P*)~ are retained in the transonic equations then the 
similarity solution for p* is, 

P* = P : f W  + (P i  * 1 3 f (3) (7) + * - * 

and the second term could match the ( ~ : ) ~ p $  term. 
Although the above arguments explain the matching of all the terms shown 

for the 'outer' corner solutions (63) ,  it is seen from (58) that there are terms in the 
transonic 'inner' solutions that do not exist in the outer solution as presently 
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constructed. That is, since ,uT = K$&, where K is a constant, the inner (58a)  and 
outer (63a)  equations for p* are, in terms of $, 

p* = pg + cK'8$%(pg)-% + ..., 

12 
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8 

7 

m 6  
I 

5 

4 

1 

I I I I I I I I l l  

I 1 I 1 I 1 I I I l l  
1 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 10.0 

Mi 
FIGURE 4. Comparison of flow deflexion angle calculated from solutions valid near the 
leading characteristic (626) and valid near the corner ( 6 7 b )  with exact numerical solutions 
(Weinbaum 1966). y = 1.4. -, exact numerical solution. Approximate solutions: 
_ _  , valid near leading characteristic ; - - -, valid near corner. 

where, again, Cl = 0. It is clear that since a simple expansion in integer powers 
of q9 was postulated in the outer region, as a result of the form of dH/d$,  no 
counterpart of the inner term of order $3 exists presently. On the other hand i t  



Supersonic rotational flow around a corner 753 

is seen that non-integer powers of @ could be considered as long as the terms 
involved satisfy the homogeneous parts of the governing equations. That is, as a 
result of the matching procedure, it  is evident that the outer solutions for this 
case should be of the form, 

p = po + @p’ + @+m + . , . . 

55 1 I 1 1 1 1 1 I I l l  

50 k::, 
45 \ 

Mi= F - 7  1 

7 --- 

-----_ 
O J  I I I I I I I I l l  

1 .o 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 94 
Mi 

FIGURE 5. Comparison of flow deflexion angle calculated from solutions valid near the 
leading characteristic (62 b )  and valid near the corner (67 b)  with exact numerical solutions 
for two different initial Mach number distributions (Weinbaum 1966). y = 1.4. -, 

, exact numerical solutions with different init,ial Mach number distributions. 
Approximate solutions : - - - , valid rear leading characteristic; ---, valid near corner. 

The addition of terms due to matching requirements is avery common occurrence 
in the method of matched asymptotic expansions. Physically, the inclusion of 
this term implies that since the flow is very nearly sonic, the incoming flow 
near the corner can influence the flow at the corner. 

48 Fluid Mech. 34 
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When expansions of the form shown in (64) are substituted into the governing 
equations, solutions are found easily. Thus, for the flow near the corner but far 
enough away from the leading characteristic that M > 1, 

- cotp,(l + r2cot2po)((4P/5) +sin2po)} 

-~ @ ~ , [ i  + r2 cotzp,l~(cot + . . . , (1 - r2) 

e = 6, + 14 rx) (c,(cotp,)a(i + r2COt2pO)P  

+$ml(i + r 2 C O t 2 p O ) ~ ( C O t p 0 ) 3 +  ..., 

2 dllr 0 

(65 b)  
where D, is a constant and again y = 1.4. If $ is replaced by ,@, according to 
(48a), and equations (65) are expanded for ,u; 4 1 and matched with (58) ,  it  is 
seen that c, = 0. 

The composite solutions for this region are formed by adding (65) (with the 
constants as in (66)) to the transonic solutions, (49a) and (53a) ,  and subtracting 
the terms common to both solutions, (58). They may be written as follows: 

where, again, F2 = i. These equations are uniformly valid to order (p;)?. 
Again, with p known, the thermodynamic properties and u, and 21, may be found 
easily. 

Comparison of asymptotic solutions with exact numerical computations 

In  figures (4) and ( 5 ) ,  the composite solutions for 8 valid near the leading 
characteristic (62 b )  and valid near the corner (67 b )  are compared with exact 
numerical solutions given by Weinbaum (1965, 1966) for rotational flow around 
a corner. 8 is plotted versus Mi for various values of ( - O,), which corresponds to 
plotting the variation of 6 along a given characteristic ( -  8, = const.). The 
method of rotational characteristics was used for the exact numerical computa- 
tions. In  figure 5 ,  exact numerical solutions are shown for two different initial 
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Mach number distributions to illustrate the fact that near the leading character- 
istic (l8,l < 1) and near the corner (Mi- 1 < l), the solutions merge and thus 
are independent of the initial Mach number distribution as indicated by the 
approximate solutions. It can be seen that for /8,1 < 1, the solutions valid near 
the leading characteristic are essentially identical with the exact numerical 

- 

- 

- 

- 
- 

1.0 - I I I 1  I I I I l l  

/ 

FIGURE 6 (u-c). Mach number distribution along the characteristic corresponding to a 
given 8, for solutions valid near the leading characteristic (62a)  and near the corner 
(67a)  with M = (sin ,a)-l. Approximate solutions: - , valid near the leading character- 
istic; - - --, valid near the corner. 

solution, but that as 10ol increases, the error in the maximum value of 181 be- 
comes larger and larger. In  addition, for Hi - 1 < 1, the solution valid near the 
corner agrees with the exact numerical solution for all [8,1, although above 
- 8, = 20°, the agreement is not consistently good. It seems evident that since 
the method of rotational characteritics involves a finite mesh size, the values 
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calculated for 8 become less precise as the corner is approached, for large IB,l; in 
this region the analytical expressions presented here are probably more accurate. 

In figures 6a, b and c, typical variations in the Mach number are given for the 
two approximate solutions, (62a) and (67 a).  Exact numerical calculations were 
not available for comparison. These figures show that the solution valid near 
the leading characteristic gives the proper slope for the Mach number distribution 
at the corner, only when ]So\ << 1. 

5.  Discussion 
The transonic similarity solution in the case where Mi, = 1 allows one to form 

composite solutions from which numerical values for 8 and p may be found with- 
out recourse to ‘matching’ with numerical solutions near the sonic region, as 
has been done previously. Since composite solutions were found both in the 
region near the leading characteristic and in the region near the corner, the 
question arises as to whether it is possible to construct one over-all composite 
solution uniformly valid in both regions. It can be shown that this is not possible 
unless higher order approximations are found for p. 

It may be noted that the solutions found for B and p are not uniformly valid as 
MI+ cx). This could be remedied by consideration of a hypersonic approximation 
where pi << 1 and the inclusion of the resulting hypersonic solutions in the com- 
posite solutions. 

Finally, it is interesting to note that the transonic similarity variable, 7, has 
a form different from that found previously by Vaglio-Laurin (1960) for the 
problem of a subsonic stream being accelerated around a corner, to supersonic 
speeds. A simple calculation shows that in terms of Cartesian co-ordinates, 
T,I = O(xy-8); on the other hand Vaglio-Laurin found a similarity variable, 
6 = O(xy-9). The reason for this difference lies, of course, in the fact that different 
initial conditions are considered in the two problems. 

The author wishes to thank Prof. A. F. Messiter and Prof. F. A. Marble for 
many stimulating discussions during the course of this work, and Prof. R. L. 
Phillips for his assistance in performing the numerical computations. This work 
was partially supported by the Advanced Research Projects Agency of the 
Department of Defence under Contract no. DAHC 15 67 C 0062. 

REFERENCES 

ADAMSON, T. C. 1968 Univ. Michigan. Imst. Sci. Tech. Rep. B A M I R A C ,  8430-1-T. 
COLE, J. D. 1965 RAND Corp. Rep. P-3207. 
FERRI, A. 1954 General Theory of High-Speed Aerodynamics. W. R. Sears. Sec. G (vol. VI, 

HAYES, W. D. & PROBSTEIN, R. F. 1966 Hypersonic Flow Theory, 2nd ed. New York: 

JORANNESEN, N. H. & MEYER, R. E. 1950 Aeronaut. Quart. 2, 127-42. 
OLSSON, G. R. & MESSITER, A. F. 1968 A.I.A.A. 6th Aerospace Sciences Meeting, New 

PAI, S. I. 1954 A.S.M.E. Proc. See. U.S. Natn. Congress Appl .  Mech. 637-42. 

High Speed Aerodynamics and Jet Propulsion). I’rinceton University Press. 

Academic Press. 

York, 22-24 Jan., paper 68-67. 



758 T. C. Adamson 

VACLIO-LAURIN, R. 1960 J .  Fluid Mech. 9, 81-103. 
VAN DYKE, M. 

Press. 
WEINBAUM, S .  1965 Avco-Everett Res. Lab. Res. Rep. no. 204. 
WEINBAUM, S.  1966 A.I.A.A. J .  4, 217-26. 
WEISS, R. F. 1967 A.I.A.A. J .  5, 2142-9. 
WEISS, R.  F. & NELSON, W. 1968 A.I.A.A. J .  6, 466-71. 
WEISS, R. F. & WEINBAUM, S .  1966 A.I.A.A. J .  4, 1321-30. 
WHITHAM, G. B. 1952 Commun. Pure Appl. Math. 5, 301-48. 

1964 Perturbation Methods in Fluid Mechanics. New York: Academic 




